Modelling density-dependent resistance in insect-pathogen interactions.

نویسندگان

  • K A White
  • K Wilson
چکیده

We consider a mathematical model for a host-pathogen interaction where the host population is split into two categories: those susceptible to disease and those resistant to disease. Since the model was motivated by studies on insect populations, we consider a discrete-time model to reflect the discrete generations which are common among insect species. Whether an individual is born susceptible or resistant to disease depends on the local population levels at the start of each generation. In particular, we are interested in the case where the fraction of resistant individuals in the population increases as the total population increases. This may be seen as a positive feedback mechanism since disease is the only population control imposed upon the system. Moreover, it reflects recent experimental observations from noctuid moth-baculovirus interactions that pathogen resistance may increase with larval density. We find that the inclusion of a resistant class can stabilise unstable host-pathogen interactions but there is greatest regulation when the fraction born resistant is density independent. Nonetheless, inclusion of density dependence can still allow intrinsically unstable host-pathogen dynamics to be stabilised provided that this effect is sufficiently small. Moreover, inclusion of density-dependent resistance to disease allows the system to give rise to bistable dynamics in which the final outcome is dictated by the initial conditions for the model system. This has implications for the management of agricultural pests using biocontrol agents-in particular, it is suggested that the propensity for density-dependent resistance be determined prior to such a biocontrol attempt in order to be sure that this will result in the prevention of pest outbreaks, rather than their facilitation. Finally we consider how the cost of resistance to disease affects model outcomes and discover that when there is no cost to resistance, the model predicts stable periodic outbreaks of the insect population. The results are interpreted ecologically and future avenues for research to address the shortfalls in the present model system are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenerational effects modulate density-dependent prophylactic resistance to viral infection in a lepidopteran pest.

There is an increasing appreciation of the importance of transgenerational effects on offspring fitness, including in relation to immune function and disease resistance. Here, we assess the impact of parental rearing density on offspring resistance to viral challenge in an insect species expressing density-dependent prophylaxis (DDP); i.e. the adaptive increase in resistance or tolerance to pat...

متن کامل

The form of host density-dependence and the likelihood of host-pathogen cycles in forest-insect systems.

Forest-insect systems frequently show cyclic dynamics which has been of considerable interest to both experimental and theoretical ecologists. One important issue has been the manner in which density-dependence acting on the host population through resource competition influences the likelihood of population cycles. Existing models make contradictory predictions. Here, we explore two models tha...

متن کامل

Entomopathogens: ecological manipulation of natural associations.

The control of insect pests with entomopathogens is unique, in that naturally occurring host-pathogen relations are manipulated to the benefit of man: protecting agricultural crops and forests or controlling insect vectors of disease. The isolation and identification of a virulent pathogen is the initial step in the development of a potential control agent. Production of the pathogen in adequat...

متن کامل

Host-plant effects the expression of resistance to Bacillus thuringiensis kurstaki in Trichoplusia ni (Hubner): an important factor in resistance evolution.

Pathogens are thought to exert strong selection on their hosts leading to increased host resistance. Bacillus thuringiensis kurstaki (Bkt) is a ubiquitous entomopathogen that has become the mainstay of nonchemical control of Lepidopteran pests and thus, the potential exists for the evolution of resistance in targeted host insects. We have studied the expression of Btk resistance in the cabbage ...

متن کامل

Ecology and evolution of pathogens in natural populations of Lepidoptera

Pathogens are ubiquitous in insect populations and yet few studies examine their dynamics and impacts on host populations. We discuss four lepidopteran systems and explore their contributions to disease ecology and evolution. More specifically, we elucidate the role of pathogens in insect population dynamics. For three species, western tent caterpillars, African armyworm and introduced populati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theoretical population biology

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 1999